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LETTER TO THE EDITOR 

Antipodal correlations and the texture (fractal lacunarity) in 
critical percolation clusters 

Benoit B Mandelbrott and Dietrich Staufferzs 
f Department of Mathematics. Yale University, New Haven, CTO6520-8283, USA 
1. Physics Department, St P X University, PO Box 50W, Antigonish, NS BZG 2W5, Canada 

Received 21 February 1994 

Abstract. The antipodal correlations b e e n  opposing secton OF large critical percolation 
clusters are negntive, as expeeted, but vanish in the infinite size limit approximated by an inner 
square much smaller than lhe whole lavice but much larger than the nearest-neighbour distance. 
Antipodal correlations are a new numerical measure of h c t a l  lacunarity, lhal is, of texture: zem 
correlation expressed that Ihe lacunarity is neuM in percolation clusten. 

Of all the random fractals [I] of interest to physics, the most thoroughly understood are the 
critical percolation clusters [Z]. Therefore, we chose those clusters to test recent advances 
in the numerical study of fractals’ texture, more specifically of their ‘lacunarity’, a notion 
concemed with departure from translational invariance, and the size distribution of the holes 

As mentioned in 111 (p 313), the shape of a Cantor set is far from being fully determined 
by its fractal dimension D. Thus. figure 1 illustrates a stack of Cantor sets; all are of 
dimension log N/log(l/r) = 10gZ‘/log4~ = 1/2, but k varies from 1 in the middle line 
to 10 as one moves up or down. The 2‘ intervals of this generator are either distributed 
uniformly (below the middle line) or split between two tight groups (above the middle line). 
Only the middle lines ‘look fractal’, the bottom one ‘looks like’ a filled interval and the top 
one seems to reduce to the endpoints of an interval. 

On every line, every level of approximation is made of small intervals of identical 
lengths; therefore the interpolation used in figure 1 can be immediately replaced by a 
completely equivalent extrapolation process. 

To appreciate the range of texture compatible D = 1.89, compare the central portions of 
a large critical cluster with plates 318 left and 318 right of [l]. The cluster is less ‘coarse’. 
closer to translational invariance than plate 318 right and, a forzeriori, plate 318 left. 

Lacunarity is not a number but a complex notion that demands several numbers (not 
functions of each other) to be fully grasped [31. Cantor sets, and all fractals with a very 
strict hierarchy, are hardest to study analytically, as 131 shows for one measure. 

However, our study of the lacunarity of percolation clusters has so far gone in a different 
direction. The underlying fact was discovered recently by one of us [3]: the ‘antipodal 
correlation’ C(lr)-to be dehed-affects lacunarity, therefore can be added to the existing 
measures of lacunarity. This discovery relates to the intuition that, overall, plane fractals 
with a dimension close to 2 ‘tend’ to have small holes, and plane fractals with a dimension 

~31. 

5 Present and permanent address: Institute for Theoretical Physics. Cologne University, 5097.3 KLiln, Germany. 
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Figure 1. A suck of Cantor sets of common dimension D = 1/2. The Ixunarily is low m 
the bottom, high near the top and ‘neutral‘ near the middle line of tht slack. (By construction. 
all lhese sets are self-similar, and have lhe Same &tal dimension D = 112, Yet, as one moves 
from boaom 10 top, one seems to move from a full unit interval that has been hollowed out so 
that only the end poim are left in.) 

close to 0 ‘tend‘ to have enonnous holes. It is now possible, for each D, to define fractals 
of neutml lucmuriq by the condition that C(n) = 0, and to measure low or high lacunarity 
by the value of C(r) (with a few added complications). Antipodal correlation will now be 
defined, explained, and tested, first, on some fully controllable fractals called nema sets 111 
(chapters 33 and 34) and, second, on critical percolation clusters. 

To define the correlation, start with a very large critical cluster, and consider the sites 
in a small box R x R whose centre is a site in the clusters. Consider two ‘pie slice’ sectors, 
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each bounded by two straight half-lines from the centre, making an angle of 4, and denote 
by 0 the angle between the pie slices' centre lines. To obtain the correlation between the 
numbers of sites in two sectors, we count the occupied sites in those sectors, call them x 
and y .  and evaluate 

C(0) = ( ( X Y )  - (X)(Y))/({XZ) - ( x ) ( x ) )  

where (. . .) denotes an average over many realizations of a random fractal. This correlation 
will depend on 0 and 9. Antipodal correlations are those for opposite sectors, 0 = R. 

The empirical finding in this letter (on which we elaborate momentarily) is that, under 
suitable limit conditions, the numbers x and y are uncorrelated. This is shown in figures 2 
and 3. 
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F i e  2. Illustation of a critical cluster, centre square, and sectors to be analysed; L = 51, 
R = 10. Boundary sites between adjacent Sectors aunt for both sectors but in the figure only 
the larger of he two numbers is shown. 
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F i i e  3. Absolutc value of the anticorrelation -C(B) for Ihe antipodes (S = n) as a function 
of lam’ce size. for a cenue of size R = 19 (+I, R = 39 (0) and R = 19 (a). 

Since the question has not been previously raised, one might apriori wonder whether or 
not this result was to be expected. The fact that it was not contrary to expectations is difficult 
to establish in the case of figure 1, because of the strict hierarchy built into Cantor sets. An 
intuitive feeling for the meaning of antipodal independence is easiest to obtain using the 
objects with holes shown on plates 306 to 309 of [I]. They are examples of ‘trema sets’ 
produced by cutting out from the plane circular ‘tremas’ (=holes) with a suitable scaling 
distribution of radii and random positions of the centres of the circles. Different circles are 
allowed to overlap, and the remainder not covered by any of the circles defines the trema 
set, which looks like Swiss cheese. 

In this structure, the antipodal correlation vanishes in the limit of small cone angles rp. 
Indeed, a circular hole cut out from the plane cannot overlap with a sector if it overlaps 
already with the opposite sector. It follows that the antipodal correlations are zero for the 
trema sets of rp + 0. (Had we not required the origin to be occupied, a hole could cover 
the origin and cut through all sectors, thus destroying this property of non-correlation.) 
Correlations are possible only for larger cone angles 6 or for sectors that are not exactly 
opposite B < z. 

If the tremas are non-convex, the value of D is unchanged, but it is possible for antipodal 
lines to be intersected by the same trema. This creates positive antipodal correlations, 
particularly when the tremas are thin circular annuli. (Annular tremas were selected to model 
rain clouds, rather successfully 141, well before the significance of antipodal correlations 
was recognized explicitly). Thus, making the trema non-convex does not change D hut 
changes the ‘swiss cheese’ to have smaller holes, hence a smoother, ‘less fractal’ texture. 

Needleshaped tremas (see plates 323 in [I]) are convex, hence yield no antipodal 
correlation and C(n) = 0, but the value of C(8) for 8 slightly different from n is much 
higher than for circular tremas, and the result is much lower lacunarity. 
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Different manipulations of the trema cause the holes to become bigger and create a 
negative correlation. 

The preceding example of the trema sets suffices to establish that antipodal non- 
correlation is not an obvious property, but one that characterizes numerically certain very 
special fractals. The fact that C ( n )  # 0 is possible means that the long range dependence 
that is characteristic of a fractal is compatible with diverse levels of detailed dependence. 
Absence of correlation for B near x expressed that the origin’s being occupied creates a 
kind of ‘screening’ or ‘shielding’ between near-antipodal directions, and expressed that a 
fractal is as relaxed or unconstrained and local as can be. 

Though percolation is a completely random procedure, all parts of the percolating cluster 
have to be connected, creating correlations not present in the trema sets. Now we describe 
our Monte Carlo simulations for site percolation. The probability of each site being empty 
or occupied is the same for every site and independent of the other sites. At the percolation 
threshold, an infinite cluster of neighbouring occupied sites is formed for the first time [2 ] .  
It is often called the critical, or the incipient infinite, cluster. This critical cluster is a fractal 
with odd-shaped holes. We looked at critical percolation clusters on 10000 L x L square 
lauices, with L varying from 13 to 3001. Clusters were grown with the Leath growth 
algorithm starting from the occupied origin of the lanice [5 ] .  Only clusters reaching one 
of the four boundaries were analysed. We did not investigate how the different weighting 
of other algorithms (like Hoshen-Kopelman) would affect our results; we found that our 
numbers change if we demand of the cluster that it touches the upper or lower boundary. 

To avoid the lattice anisotropy (which we think will yield different results for different 
angles), we always worked with the eight sectors having one of the lattice axes as a boundary. 
Sites on a boundary between two sectors were counted fully for both sectors; for @ < x/4, 
the sites not belonging to a sector were not analysed. Figure 2 gives a percolation example 
with a division into eight sectors of 45 degrees each. Angles smaller than 4 = n/4 were 
realized by taking 4 = tan-’ ( l / n ) ,  with n = 1,2,3, .  . . , 10. For example, the first sector 
for positive x coordinates and positive small y coordinates has x varying from 0 to L/2, and 
for a given x ,  the y coordinate varies from 0 to x / n  and is an integer rounded downward. 

By definition, C(e) = 1 when e = 0. For adjacent sectors we found C(B) to be 
positive and to approach unity when n increases (narrow cones). Antipodal sectors, however, 
showed negative correlations; this means that in this method a cluster extending strongly 
to the right has less than usual mass on its left. (This effect is reduced somewhat if we 
demand that, besides touching one of the four outer boundaries, the cluster also touches all 
found boundaries of an inner square of size (L/3)* centred about the origin.) However, the 
anticorrelations between the antipodes become very small if we do not analyse the whole 
cluster but only centred R x  squares. Only here can be expected simple power laws and 
self-similarity to apply, just as for diffusion limited aggregates and random walks [6]. Thus 
within the large L x L lattice which the cluster has to span, we counted only the cluster 
sites in a small square of size R x R. Now for fixed R and L + CO, figure 2 shows that the 
antipodal anticorrelation C decays towards a value close to the statistical error - 0.01; we 
regard the minima at and above L = 1000 as random fluctuations. (However, the antipodal 
correlations are negative for all L; hence, the statistical significance of the plateau seen in 
figure 3 for large L deserves a closer look.) 

The comparison of our data in figure 3 for R = 19, 39 and 79 shows that the larger 
R yield a more pronounced decay of the anticorrelation towards a smaller value. Plotted 
versus L / R  instead of L, the three data sets roughly collapse in the decay region (but not 
in the final plateau of uncertain statistical significance). Thus in the scaling limit 

a < < R < L  
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(where a is the distance between nearest neighbours) the correlations between antipodes 
vanish. 

The main result, that the antipodes are anticorrelated for L = R and become decorrelated 
for L >> R, does not depend qualitatively on the lattice size or the cone angle 4 = tan-’ 
(l/n). Decreasing this cone angle from 45 degrees, the antipodal correlations for the hole 
cluster ( R  = L) decrease slightly from -0.22 at n = 1 to -0.19 at n = IO (and to 0.175 for 
infinite n, which restricts attention to the sites that are on the lattice axes). Also, correlations 
between nearly opposite sectors, B = II * 4, approach those for opposite sectors if the angle 
4 becomes small. And for R = 1 and 4 = n/4, the antipodal correlations varied between 
-0.213 and -0.225 for L =51, 101,251,501, 1251, 1601 and 2001. 

In conclusion, we showed that antipodes are anticorrelated for large critical percolation 
clusters on he square lattice, but anticomlation vanishes in the central part of the clusters. 
Slices need not be very thin for the anticorrelation to vanish. 

One of us OS) thanks the Canada Council and the German-Israeli foundation for support 
and Naeem Jan for discussions. We thank Amnon Ahorony for very useful comments and 
the use of his workstation. 
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